查古籍
1953年,Watson和Crick提出了著名的DNA分子的雙螺旋結構模型,揭示了遺傳信息是如何儲存在DNA分子中,以及遺傳性狀何以在世代間得以保持。這是生物學發(fā)展的重大里程碑。
在DNA雙螺旋結構模型建立之前,早在1868年,Miescher已經(jīng)從膿細胞提取到核酸與蛋白質(zhì)的復合物,當時稱為核素(nuclein)。但核酸在生命活動中的重要地位,卻遲至本世紀50年代才被認識。
本世紀20年代,Levene研究了核酸的化學結構并提出四核苷酸假說;40年代末,Avery,Hershey和Chase的實驗嚴密地證實了DNA就是遺傳物質(zhì);50年代初,Chargaff應用紫外分光光度法結合紙層析等簡單技術,對多種生物DNA作堿基定量分析,發(fā)現(xiàn)DNA堿基組成有如下規(guī)律(表15-3)。
表15-3 不同生物來源的DNA四種堿基比例關系
(1)同一生物的不同組織的DNA堿基組成相同;
(2)一種生物DNA堿基組成不隨生物體的年齡、營養(yǎng)狀態(tài)或者環(huán)境變化而改變;
(3)幾乎所有的DNA,無論種屬來源如何,其腺嘌呤摩爾含量與胸腺嘧啶摩爾含量相同(A]=[T),鳥嘌呤摩爾含量與胞嘧啶摩爾含量相同(G]=[C),總的嘌呤摩爾含量與總的嘧啶摩爾含量相同([A+G]=[C]+[T)。
(4)不同生物來源的DNA堿基組成不同,表現(xiàn)在A+T/G+C比值的不同;
這些結果后來為DNA的雙螺旋結構模型提供了一個有力的佐證。
Watson和Crick以立體化學原理為準則,對Wilkins和Franklin的DNa X射線衍射分析結果加以研究,提出了DNA結構的雙螺旋模式,其主要內(nèi)容如下:
圖15-5 DNA的雙螺旋結構模式
A.正面觀:長方框內(nèi)有詳細說明,S代表脫氧核糖。
B.俯視:涂黑的是堿基,此處全部堿基都是嘧啶,只看到糖的側面略呈三角形,最外圍是磷酸及其酯鍵。
(1)在DNA分子中,兩股DNA鏈圍繞一假想的共同軸心形成一右手螺旋結構,雙螺旋的螺距為3.4nm,直徑為2.0nm。(圖15-5,A,B)。
(2)鏈的骨架(backbone)由交替出現(xiàn)的、親水的脫氧核糖基和磷酸基構成,位于雙螺旋的外側。
(3)堿基位于雙螺旋的內(nèi)側,兩股鏈中的嘌呤和嘧啶堿基以其疏水的、近于平面的環(huán)形結構彼此密切相近,平面與雙螺旋的長軸相垂直。一股鏈中的嘌呤堿基與另一股鏈中位于同一平面的嘧啶堿基之間以氫鏈相連,稱為堿基互補配對或堿基配對(base pairing),堿基對層間的距離為0.34nm。堿基互補配對總是出現(xiàn)于腺嘌呤與胸腺嘧啶之間(A=T),形成兩個氫鍵;或者出現(xiàn)于鳥嘌呤與胞嘧啶之間(G=C),形成三個氫鍵。(圖15-6)。
圖15-6 A-T,G-C間的氫鍵形成
(4)DNA雙螺旋中的兩股鏈走向是反平行的,一股鏈是5′→3′走向,另一股鏈是3′→5′走向。兩股鏈之間在空間上形成一條大溝(major groove)和一條小溝(minor groove),這是蛋白質(zhì)識別DNA的堿基序列,與其發(fā)生相互作用的基礎。
DNA雙螺旋的穩(wěn)定由互補堿基對之間的氫鍵和堿基對層間的堆積力(basestacking force)維系。DNA雙螺旋中兩股鏈中堿基互補的特點,邏輯地預示了DNA復制過程是先將DNA分子中的兩股鏈分離開,然后以每一股鏈為模板(親本),通過堿基互補原則合成相應的互補鏈(復本),形成兩個完全相同的DNA分子。因為復制得到的每對鏈中只有一條是親鏈,即保留了一半親鏈,將這種復制方式稱為DNA的半保留復制(semiconservativereplication)。后來證明,半保留復制是生物體遺傳信息傳遞的最基本方式。
DNA雙螺旋是核酸二級結構的重要形式。雙螺旋結構理論支配了近代核酸結構功能的研究和發(fā)展,是生命科學發(fā)展史上的杰出貢獻。
清 黃元御 著
黃元御醫(yī)書總目錄
《素問懸解》《靈樞懸解》《難經(jīng)懸解》《傷寒懸解》《金匱懸解》《傷寒說意》
《四圣心源》《素靈微蘊》《四圣懸樞》《長沙藥解》《玉楸藥解》
CopyRight ©2019-2025 學門教育網(wǎng) 版權所有
網(wǎng)站備案/許可證號:魯ICP備19034508號-2
1953年,Watson和Crick提出了著名的DNA分子的雙螺旋結構模型,揭示了遺傳信息是如何儲存在DNA分子中,以及遺傳性狀何以在世代間得以保持。這是生物學發(fā)展的重大里程碑。
在DNA雙螺旋結構模型建立之前,早在1868年,Miescher已經(jīng)從膿細胞提取到核酸與蛋白質(zhì)的復合物,當時稱為核素(nuclein)。但核酸在生命活動中的重要地位,卻遲至本世紀50年代才被認識。
本世紀20年代,Levene研究了核酸的化學結構并提出四核苷酸假說;40年代末,Avery,Hershey和Chase的實驗嚴密地證實了DNA就是遺傳物質(zhì);50年代初,Chargaff應用紫外分光光度法結合紙層析等簡單技術,對多種生物DNA作堿基定量分析,發(fā)現(xiàn)DNA堿基組成有如下規(guī)律(表15-3)。
表15-3 不同生物來源的DNA四種堿基比例關系
DNA來源腺嘌呤(A)胸腺嘧啶(T)鳥嘌呤(G)胞嘧啶(C)(A+T)/(G+C)大腸桿菌25.424.824.125.71.01小麥26.828.023.222.71.21鼠29.725.621.922.81.21豬:肝29.429.720.520.51.43胸腺30.028.920.420.7脾29.629.220.420.8酵母31.332.918.717.51.079(1)同一生物的不同組織的DNA堿基組成相同;
(2)一種生物DNA堿基組成不隨生物體的年齡、營養(yǎng)狀態(tài)或者環(huán)境變化而改變;
(3)幾乎所有的DNA,無論種屬來源如何,其腺嘌呤摩爾含量與胸腺嘧啶摩爾含量相同(A]=[T),鳥嘌呤摩爾含量與胞嘧啶摩爾含量相同(G]=[C),總的嘌呤摩爾含量與總的嘧啶摩爾含量相同([A+G]=[C]+[T)。
(4)不同生物來源的DNA堿基組成不同,表現(xiàn)在A+T/G+C比值的不同;
這些結果后來為DNA的雙螺旋結構模型提供了一個有力的佐證。
Watson和Crick以立體化學原理為準則,對Wilkins和Franklin的DNa X射線衍射分析結果加以研究,提出了DNA結構的雙螺旋模式,其主要內(nèi)容如下:
圖15-5 DNA的雙螺旋結構模式
A.正面觀:長方框內(nèi)有詳細說明,S代表脫氧核糖。
B.俯視:涂黑的是堿基,此處全部堿基都是嘧啶,只看到糖的側面略呈三角形,最外圍是磷酸及其酯鍵。
(1)在DNA分子中,兩股DNA鏈圍繞一假想的共同軸心形成一右手螺旋結構,雙螺旋的螺距為3.4nm,直徑為2.0nm。(圖15-5,A,B)。
(2)鏈的骨架(backbone)由交替出現(xiàn)的、親水的脫氧核糖基和磷酸基構成,位于雙螺旋的外側。
(3)堿基位于雙螺旋的內(nèi)側,兩股鏈中的嘌呤和嘧啶堿基以其疏水的、近于平面的環(huán)形結構彼此密切相近,平面與雙螺旋的長軸相垂直。一股鏈中的嘌呤堿基與另一股鏈中位于同一平面的嘧啶堿基之間以氫鏈相連,稱為堿基互補配對或堿基配對(base pairing),堿基對層間的距離為0.34nm。堿基互補配對總是出現(xiàn)于腺嘌呤與胸腺嘧啶之間(A=T),形成兩個氫鍵;或者出現(xiàn)于鳥嘌呤與胞嘧啶之間(G=C),形成三個氫鍵。(圖15-6)。
圖15-6 A-T,G-C間的氫鍵形成
(4)DNA雙螺旋中的兩股鏈走向是反平行的,一股鏈是5′→3′走向,另一股鏈是3′→5′走向。兩股鏈之間在空間上形成一條大溝(major groove)和一條小溝(minor groove),這是蛋白質(zhì)識別DNA的堿基序列,與其發(fā)生相互作用的基礎。
DNA雙螺旋的穩(wěn)定由互補堿基對之間的氫鍵和堿基對層間的堆積力(basestacking force)維系。DNA雙螺旋中兩股鏈中堿基互補的特點,邏輯地預示了DNA復制過程是先將DNA分子中的兩股鏈分離開,然后以每一股鏈為模板(親本),通過堿基互補原則合成相應的互補鏈(復本),形成兩個完全相同的DNA分子。因為復制得到的每對鏈中只有一條是親鏈,即保留了一半親鏈,將這種復制方式稱為DNA的半保留復制(semiconservativereplication)。后來證明,半保留復制是生物體遺傳信息傳遞的最基本方式。
DNA雙螺旋是核酸二級結構的重要形式。雙螺旋結構理論支配了近代核酸結構功能的研究和發(fā)展,是生命科學發(fā)展史上的杰出貢獻。