查古籍
等級資料又稱為半計(jì)量資料,當(dāng)兩組等級資料比較時(shí),用秩和檢驗(yàn)來比較其相差是否顯著比用χ2檢驗(yàn)要恰當(dāng)。兩組等級資料,通常例數(shù)都較多,故一般都用計(jì)算法,其步驟與兩組資料的秩和檢驗(yàn)相似,不同的是要求各等級的平均秩號,為此,先要求得各等級的秩號范圍。今舉例10.5說明之。
1.求各等級的平均秩號。為此,先要求出各等級的秩號范圍,如等級“-”共18+8=26例,共秩號范圍自1~26。要注意的是各等級的秩號范圍必須緊相聯(lián)接。最后一組秩號范圍的上限一定等于兩組例數(shù)之和。求得各等級秩號范圍后,再求其下限和上限的平均,即可算得平均秩號,如等級“一”的平均秩號為(1+26)/2=13.5。余類推。
2.求出R及其n1,為計(jì)算方便,把例數(shù)少的正常人組的秩號之和作為R其例數(shù)為n1得R=308,n1=20,n1=32
3.代入式(10.7)得u值,即可作結(jié)論。
例10.5,今有20名正常人和32名鉛作業(yè)工人尿棕色素定性檢查結(jié)果如下表10.5,試問其相差是否顯著?
表10.5 20名正常人和32名鉛作業(yè)工人尿棕色素定性檢查結(jié)果
n1=20 n2=32 R=308
代入式(10.7)
u0.01=2.58,今u>u0.01,故P
CopyRight ©2019-2025 學(xué)門教育網(wǎng) 版權(quán)所有
網(wǎng)站備案/許可證號:魯ICP備19034508號-2
等級資料又稱為半計(jì)量資料,當(dāng)兩組等級資料比較時(shí),用秩和檢驗(yàn)來比較其相差是否顯著比用χ2檢驗(yàn)要恰當(dāng)。兩組等級資料,通常例數(shù)都較多,故一般都用計(jì)算法,其步驟與兩組資料的秩和檢驗(yàn)相似,不同的是要求各等級的平均秩號,為此,先要求得各等級的秩號范圍。今舉例10.5說明之。
1.求各等級的平均秩號。為此,先要求出各等級的秩號范圍,如等級“-”共18+8=26例,共秩號范圍自1~26。要注意的是各等級的秩號范圍必須緊相聯(lián)接。最后一組秩號范圍的上限一定等于兩組例數(shù)之和。求得各等級秩號范圍后,再求其下限和上限的平均,即可算得平均秩號,如等級“一”的平均秩號為(1+26)/2=13.5。余類推。
2.求出R及其n1,為計(jì)算方便,把例數(shù)少的正常人組的秩號之和作為R其例數(shù)為n1得R=308,n1=20,n1=32
3.代入式(10.7)得u值,即可作結(jié)論。
例10.5,今有20名正常人和32名鉛作業(yè)工人尿棕色素定性檢查結(jié)果如下表10.5,試問其相差是否顯著?
表10.5 20名正常人和32名鉛作業(yè)工人尿棕色素定性檢查結(jié)果
尿棕色素定性結(jié)果正常人鉛作業(yè)工人合計(jì)秩號范圍平均秩號例數(shù)較小組的秩和-188261—2613.5243+2101227—3832.565++—7739—4542.0—+++—3346—4847.0—++++—4449—5250.5—n1=20 n2=32 R=308
代入式(10.7)
u0.01=2.58,今u>u0.01,故P